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ABSTRACT

We show that, consistently, there is an ultrafilter F on ω such that if

N`
n = (P `

n ∪ Q`
n, P `

n, Q`
n, R`

n) (for ` = 1, 2, n < ω), P `
n ∪ Q`

n ⊆ ω, and
∏

n<ω N1
n/F ≡

∏

n<ω N2
n/F are models of the canonical theory tind of the

strong independence property, then every isomorphism from
∏

n<ω N1
n/F

onto
∏

n<ω N2
n/F is a product isomorphism.

0. Introduction

In a previous paper [Sh326] we gave two constructions of models of set theory

in which the following isomorphism principle fails in various strong respects:

(Iso 1): If M , N are countable elementarily equivalent structures and F

is a non-principal ultrafilter on ω, then the ultrapowers M∗, N∗ of M ,

N with respect to F are isomorphic.

As is well-known, this principle is a consequence of the Continuum Hypothesis.

Recall that Keisler celebrated theorem (from [Ke67]) says that, if 2λ = λ+ then

∗ The first version of this work done in 93; First typed: May 1993.
∗∗ This research was partially supported by the United States-Israel Binational Sci-

ence Foundation. Publication 509

Received December 06, 2004 and in revised from June 21, 2006

61



62 SAHARON SHELAH Isr. J. Math.

two models, M,N of cardinality at most λ+ (and vocabulary of cardinality

≤ λ) are elementarily equivalent iff for some ultrafilter F on λ, the ultrapowers

Mλ/F , Nλ/F are isomorphic. This has given an algebraic characterization of

elementary equivalence.

In [Sh405] our aim originally was to give a related example in connection

with the well-known isomorphism theorem of Ax and Kochen. In its general

formulation, that result states that a fairly broad class of Henselian fields of

characteristic zero satisfying a completeness (or saturation) condition are clas-

sified up to isomorphism by the structure of their residue fields and their value

groups. That is, the statement that interested us in the second paper in this

series [Sh405], was:

(Iso 2): If F is a nonprincipal ultrafilter on ω, then the ultraproducts
∏

p Zp/F and
∏

p Fp[[t]]/F are isomorphic.

The answer we got was, more generally,

Theorem 0.1 (See [Sh405]): It is consistent with the axioms of set theory that

there is a nonprincipal ultrafilter F on ω such that for any two sequences of

discrete rank 1 valuation rings (Rin)n=1,2,... (i = 1, 2) having countable residue

fields, any isomorphism F :
∏

nR
1
n/F −→

∏

nR
2
n/F is an ultraproduct of

isomorphisms Fn : R1
n −→ R2

n (for a set of n’s contained in F). In particular,

for F -majority of the n, the valuation rings R1
n, R

2
n are isomorphic.

In the case of the rings Fp[[t]] and Zp, we see that (Iso 2) fails. For this

our main work was to show the following statement which actually from model

theoretic point of view is more basic and interesting.

Theorem 0.2 (See [Sh405]): It is consistent with the axioms of set theory

that there is a nonprincipal ultrafilter F on ω such that for any two sequences

of countable trees (T in)n=1,2,... for i = 1, 2, with each tree T in countable with

ω levels, and with each node having at least two immediate successors, if

T i =
∏

n T
i
n/F , then for any isomorphism F : T 1 '

−→ T 2 there is an ele-

ment a ∈ T 1 such that the restriction of F to the cone above a is the restriction

of an ultraproduct of maps Fn : T 1
n −→ T 2

n .

From a model theoretic point of view this is still not the right level of general-

ity for a problem of this type. There are two natural ways to pose the problem.

From now on
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Convention 0.3: In the rest of §0 and §2,§3 models are countable with count-

able vocabulary if not said otherwise, and we use M,N to denote models. If we

say a model may be uncountable we assume its vocabulary is countable if not

said otherwise.

Problem 1: Characterize the pairs of countable models M , N which are

pseudo-isomorphic, where

Definition 0.4: We say that the countable models M,N are pseudo-isomorphic

if:

(a) if F is a nonprincipal ultrafilter over ω, then Mω/F , Nω/F are isomorphic,

and

(b) clause (a) holds, even after forcing by any (set) forcing .

Of course, this is not an isomorphism (see below on models of a stable theory).

A related problem is

Problem 2: Characterize the pairs of countable models M , N with noniso-

morphic ultrapowers Mω/F , Nω/F modulo any nonprincipal ultrafilter F , in

some forcing extension. (I.e., the negation is: for every forcing extension for

some nonprincipal ultrafilter F on ω, we have Mω/F ' Nω/F .)

There are two variants of the second problem: the ultrapowers may be formed

either by using one ultrafilter twice (called 2(A)), or by using any two ultrafilters

(called 2(B)), see below. Since the continuum hypothesis holds is too easy ask:

Problem 3: Characterize the pairs M,N of countable models such that in

some forcing extension failing in continuum hypothesis, for every nonprincipal

ultrafilter F on ω, Mω/F ∼= Nω/F

Problem 4: Let us write M ≤ N whenever in every forcing extension, if F is

an ultrafilter on ω such that Nω/F is saturated, then Mω/F is also saturated.

Characterize this relation.

This is related to the Keisler order (see Keisler [Ke67], or [Sh:a], or [Sh:c,

Chapter VI]), but does not depend on the fact that the ultrafilter is regular,

so some of the results there apply to Problem 4, this in turn implies results on

Problem 2(A). By [Sh:c, VI] we know the following. Let D be a nonprinciple

ultrafilter on ω, and M (countable) model (with countable vocabulary). If
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Th(M) is stable then Mω/D is saturated. We can replace ℵ0 here by any

cardinal κ satisfying κ<κ = κ using regular ultrafilter on κ.

Now, by [Sh13], there is an ultrafilter D on 2ℵ0 such that for countable models

(with countable vocabulary) M,N

M ≡ N ⇒ M2ℵ0
/D ∼= N2ℵ0

/D.

and we can add “Mω/D is κ-saturated” for every κ such that 2<κ = 22ℵ0
. Also,

if 2ℵ0 = ℵ1, F is a nonprincipal ultrafilter on ω and M1 ≡ M2 are countable,

then Mω
1 /F

∼= Mω
2 /F (as they are saturated); similarly if M `

n are countable

models (for ` = 1, 2, n < ω), M` =
∏

n<ωM
`
n/F`, and F` are nonprinci-

pal ultrafilters on ω, then M1 ≡ M2 ⇒ M1
∼= M2. On the other hand, if

2ℵ0 > ℵ1, then by [Sh:c, Ch VI] for every regular cardinal θ, ℵ1 ≤ θ < 2ℵ0

there is a nonprincipal ultrafilter Fθ on ω such that the downward cofinal-

ity of (ω,<)ω/Fθ above ω is θ so θ1 6= θ2 ⇒ (ω,<)ω/Fθ1 � (ω,<)ω/Fθ2.

This gives negative results on Problem 2(B) above. If Th(M) is unstable

then some such D,Mω/D are not ℵ2-saturated. Why? We can choose ϕ(x̄, ȳ)

which has the order property, lg(x̄) = m and let ān,i ∈ mM(i < n < ω) be

such that M |= ϕ[ān,i, ān,j ] iff i < j < n. Let Pn = {ān,i : i < ω}, <n=

{(ān,i, ān,j) : i < j < n}. Consider (N,P ) :=
∏

n<ω(M,Pn, <n) \ D, now use a

“cut” of
∏

n<ω(Pn, <n)/D with cofinality (ℵ0,ℵ1). So for Problem 4, the stable

theories are minimal.

A more general problem is

Problem 5: For which quadruples (M1, N1,M2, N2) of countable models such

that M1 ≡ M2 and N1 ≡ N2, in some forcing extension for some ultrafilter F

on ω, Mω
1 /F

∼= Nω
1 /F but Mω

2 /F � Nω
2 /F? (and other variants as above).

We can also replace above the countable model M by the first order theory

Th(M) e.g. we can define: T1 ≤ T2 iff (T1, T2 are countable theories such that)

for every countable model M1 of T1 there is a countable model M2 of T2 such

that M1 ≤M2. The present paper is dedicated to sheding some further light.

Problem 6: We may be more interested in the ultrafilter, so define the order

on the family of ultrafilters on ω but here our focus is on model theory. More

specifically, we may ask to investigate ≤uf where F1 ≤uf F2 iff F1,F2 are non-

principal ultrafilter on ω such that for every countable model M , if Mω/F1 is

saturated then Mω/F2 is saturated.
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Working on [Sh405] we had hoped to continue it sometime. However, we

actually began only after M. Jarden asked:

(∗) Suppose that F `n are finite fields (for n < ω, ` = 1, 2) satisfying F 1
n � F 2

n .

Can we have (a universe and) an ultrafilter F on ω such that
∏

n<ω F
1
n/F

and
∏

n<ω F
2
n/F are elementarily equivalent but not isomorphic?

That was not an arbitrary question: he knew that many such pairs of ultra-

products are elementarily equivalent, because the first order theory of a field

F which is isomorphic to an ultraproduct of finite fields is determined by its

characteristic and its subfield of algebraic elements. Hence we can find an equiv-

alence relation Ek on the family of finite fields for k < ω each with finitely many

equivalence classes of the form: an equation from ∆n has a solution in one iff

it has a solution in the other with ∆n finite, and such that if F 1
n , F

2
n are finite

fields for n < ω and F is a nonprincipal ultrafilter on ω and for each k the

set {n < ω : (F 1
n)Ek(F 2

n)} belongs to F then the respective ultraproducts are

elementarily equivalent.

This raises the question whether such theorem of fields has the strong inde-

pendence property. The following reference to the strong independence property

for finite fields was given to me by Gregory Cherlin: Duret [Du80, pp. 136–157].

Here we continue [Sh326, §3], [Sh405, §1] to give an affirmative answer to (∗),

we show that after adding ℵ3 Cohen reals to a suitable ground model, one gets

a universe with an ultrafilter F on ω and a sequence of models 〈Mn : n < ω〉

on ω such that

(∗∗) if N `
n = (P `n ∪ Q`n, P

`
n, Q

`
n, R

`
n) (for ` = 1, 2, n < ω), P `n ∪ Q`n ⊆ ω, and

∏

n<ω N
1
n/F ≡

∏

n<ω N
2
n/F are models of the canonical theory tind of the

strong independence property (see Definition 1.5 below), then:

� every isomorphism from
∏

n<ω N
1
n/F onto

∏

n<ω N
2
n/F is (first order)

definable in
∏

n<ωMn/F for some models Mn with universe ω or what

is equivalent but hopefully more transparent

�′ if F is an isomorphism fromN1 =
∏

n<ω N
1
n/F onto N2 =

∏

n<ω N
2
n/F

then we can find unary functions Fn from N1
n into N2

n for every n < ω

such that the set of n for which Fn is an isomorphism from N1
n onto

N2
n belongs to the ultrafilter and

∏

n<ω(N1
n, N

2
n, Fn)/F is (N1, N2, F ).

Our forcing is adding ℵ3 Cohen reals, but we need that our model of set

theory, i.e., the universe over which we force, satisfies some conditions. There

are two ways to get a “suitable” ground model. The first way involves taking any

ground model which satisfies a relevant portion of the GCH, and extending it
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by an appropriate preliminary forcing, which generically adds the name for an

ultrafilter which will appear after addition of the Cohen reals. The alternative

approach, which we consider more model–theoretic, is to start with an L–like

ground model and use instances of diamond (or related weaker principles) to

prove that a sufficiently generic name already exists in the ground model. We

will fully present the first approach — the second one should be then an easy

modification of the arguments presented in [Sh405, §1].

Our presentation is somewhat more general than needed for (**). By allowing

more what we call “bigness” properties to be involved in the definition of App,

we leave room for getting analogs of (**) for more classes of models (getting

the conclusion for all of them at once, or possibly only for some) — as long as

the respective bigness notions are as in Definition 1.4. This, we hope, would

be helpful in connection with the problems above (particularly, Problems 2

and 5). For the problem on fields, only the case associated with the strong

independence property is needed; general bigness notions appear for possible

general treatment.

Let us comment on our general point of view. In this paper we try to advance

in Problems 1 and 2(A) and for this, it seemed, we could take the maximal Γ
˜

,

i.e., allow all ℵ0-bigness notions. However, concerning Problem 4 (investigating

the partial order ≤ on models), for showing M � N , the construction causes

Nω/F to be almost always non-ℵ3–saturated. We need finer tools for them,

e.g., using some bigness notion but not others.

The two previous papers benefited from Gregory Cherlin, the present one

benefited from Andrzej Ros lanowski, thank you!

We continue those investigations in [Sh800].

Notation 0.5: Our notation is standard and compatible with that of classical

textbooks (like Hodges [Ho93], Chang and Keisler [CK] and Jech [J]). In forcing

we keep the older convention that a stronger condition is the larger one.

(1) We will use two forcing notions denoted by Cℵ3 and App (see Definitions

2.1 and 2.4, respectively). Conditions in these forcing notions will be called

p, q, r (with possible sub/super-scripts). Note that the product App × Cℵ3 is a

dense subset of the composition App ∗ Cℵ3

(2) All names for objects in forcing extensions will be denoted with a tilde

below (e.g., a
˜

, p
˜

).
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(3) The letter τ (with possible sub/super-scripts) stands for a vocabulary of

a first order language; we may also write τ(M), τ(T ) for a model M or theory T

with the obvious meaning. We will use the letters p, q (with sub/super-scripts)

to denote types.

(4) The universe of a model M will be denoted |M |, but we will often abuse

this notation and write, e.g., a ∈M . The cardinality of a set A will be denoted

|A|, and, for a model M , ‖M‖ will stand for the cardinality of its universe.

Comment: Why the ℵ3? We like to have a preliminary forcing notion App

which for some κ, is κ-complete, κ+-c.c., κ<κ = κ; so that every cardinal is

preserved. But for κ = ℵ1, A ⊆ κ+ countable the number of conditions with

this domains (i.e., the number of names of ultrafilters on ω as above) is more

than κ hence in the natural choice the κ-c.c may fail, we may remedy this but

it is easier to use a cardinal κ such that µ < κ⇒ µℵ0 < κ.

1. Bigness notions

In this section we will quote relevant definitions and results from [Sh:e, Chapters

X, XI] (=[Sh:384], see history there, and [Sh:482]), but we somewhat restrict

ourselves here. The reader interested in the field case only and/or finding Def-

inition 1.1 obscure, may jump directly to Definition 1.5.

Definition 1.1 (See [Sh:e, Chapter XI, §1]): Let T be a complete first order

theory (in a vocabulary τ), and K = KT be a class of models of T (normally: all

models of T ) partially ordered by the relation ≺ of being elementary submodel.

Also let t be a first order theory with a countable vocabulary τ(t) (including

equality, treating function symbols as predicates).

(1) We say that K′ is an A–place in K if

(a) K′ ⊆ K;

(b) if M ∈ K′, then A ⊆M ;

(c) if M ≺ N are from K and A ⊆M , then (M ∈ K′) ⇔ (N ∈ K′);

(d) if M ∈ K and A ⊆ N ∈ K and M,N are isomorphic over A, then

M ∈ K′ ⇔ N ∈ K′.

(1A) A place is an A-place for some A (alternatively use only M ≺ C of

cardinality < κ̄, where C is κ̄-saturated model of T , as in [Sh:c]).

(2) For A ⊆M ∈ K we let K′ = KA,M be the class

{N ∈ K : A ⊆ N and ā ∈ ω>A ⇒ tp(ā, ∅,M) = tp(ā, ∅, N) }.
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We call it the (A,M)-place.

(3) A local bigness notion Γ for K (without parameters, in one variable

x) is a function with domain K which for every model M ∈ K gives

Γ−
M = Γ−(M) ⊆ {ϕ(x, ā) : ϕ ∈ L(τ) & ā ⊆M},

Γ+
M = Γ+(M) = {ϕ(x, ā) : ϕ ∈ L(τ) & ā ⊆M} \ Γ−

M

such that

(a) Γ−
M is preserved by automorphisms of M ,

(b) Γ−
M is a proper ideal, i.e., Γ+

M 6= ∅ and

(α) if M |= (∀x)(ϕ(x, ā) → ψ(x, b̄)) and ψ(x, b̄) ∈ Γ−
M , then ϕ(x, ā) ∈

Γ−
M ,

(β) if ϕ1(x, ā1), ϕ2(x, ā2) ∈ Γ−
M , then ϕ1(x, ā1) ∨ ϕ(x, ā2) ∈ Γ−

M .

Elements of Γ−
M are called Γ-small in M , members of Γ+

M are Γ-big.

A local bigness notion Γ for K with parameters1 from A is defined

similarly but Dom(Γ) is an A-place K′ in K and in clause (a) the automorphisms

are over A.

(4) We say that a local bigness notion Γ is invariant for K (or for an A-

place K′) if for M ≺ N from K (or from the A-place K′) we have Γ−
M ⊆ Γ−

N and

Γ+
M ⊆ Γ+

N .

(5) A Γ-big type p(x) in M is a set of formulas ψ(x, ā) all of whose finite

conjunctions are Γ–big in M .

(6) A pre t-bigness notion scheme Ω is a sentence ψΩ (in possibly infini-

tary logic) in the vocabulary τ(t) ∪ {P ∗}, where P ∗ is a unary predicate, we

may say “using P ∗”.

(7) An interpretation with parameters of t in a model M ∈ K is ϕ̄ =

〈ϕR(ȳR, āR) : R ∈ τ(t)〉, where ϕR ∈ L(τ) and āR is a sequence of appropriate

length of elements of M . So a predicate R from τ(t) is interpreted as

{b̄ : M |= ϕR(b̄, āR), lg(b̄) = lg(ȳR) (= the arity of R) }.

The interpreted model is called M [ϕ̄] or M [ϕ̄] and we demand that it is a model

of t; so in particular M [ϕ̄] is a τ(t)-model and its universe is {b ∈ M : M |=

ϕ=(b, b, ā=)} defined by ϕ=(x, y, ā=) which we demand to be an equivalence

relation; here usually equality on its domains, so we may write just ϕ=(x, ā=)

or just ϕ(x, ā); of course we could use k-tuples for elements and then lg(ȳR) = kn

for R an n-place predicate from τ(t)

1 Alternatively use the monster model.
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(8) For a pre t-bigness notion scheme Ω = ψΩ and an interpretation ϕ̄ of t

in M ∈ K with parameters from A ⊆ M , we define the ϕ̄-derived local pre-

bigness notion Γ = Γψ,ϕ̄ = Γψ [ϕ̄] with parameters from A ⊆ M (in the

A-place KA,M) as follows:

Given M ′ ∈ KA,M , a formula ϑ(x, b̄) in L(τ) (with parameters from M ′ of

course) is Γψ [ϕ̄]–big in M ′ if for any quite saturated N∗, M ′ ≺ N∗, letting

P ∗ = {a ∈ N∗[ϕ̄] : N∗ |= ϑ[a, b̄]}

we have (N∗[ϕ̄], P ∗) |= ψ.

In full we may write Γ = Γ(t,ψ,ϕ̄) and even Γ = Γ(t,ψ,ϕ̄,M,A).

(9) We say ψ is a t-bigness notion (for T ) if for every interpretation ϕ̄ of t in

some A-place K′ ⊆ K, Γt,ψ,ϕ̄ is an invariant2 local bigness notion for our fixed

K. If there is no T mentioned or understood we mean “for every T ”. So it is

enough in (8) above if we define ΓM ′ when M ≺M ′.

Proposition 1.2: (1) If Γ is a local bigness notion for K with parameters in

A, M ∈ KA,M ′ and p(x) is a Γ-big type in M , then it can be extended to

Γ-big type q in M which is a complete type over M .

(2) Assume that t, ψ, ϕ̄,M,A are as in Definition 1.1(8). The truth value of

“ϑ(y, ā) is Γ(t,ψ,ϕ̄)-big” depends just on (M � τ ′, ā, c)c∈A whenever the

formulas in ϕ̄ and ϑ belong to L(τ ′).

Proposition 1.3: For T,K = KT and t as in 1.1,

(�) if N ≺M are from K, and ϕ̄ = 〈ϕR(ȳR, āR) : R ∈ τ(t)〉 is an interpretation

of t inN , then ϕ̄ is an interpretation of t in M (i.e., M [ϕ̄] |= t) and moreover

N [ϕ̄] ≺M [ϕ̄].

The following definition is crucial in our application, the proofs give some

amount of definability, “a local version” and we need to deduce from it a global

one. This is a good property, criterion for closing the gap which have in fact

been used for tind, see more systematically in [Sh800].

Definition 1.4: Let t be a first order theory in a vocabulary τ(t). Suppose that

ψ is a t-bigness notion scheme, using P ∈ τ(t), a unary predicate, and ϑ(y, x)

is a τ(t)-formula. We say that ψ is (ℵ2,ℵ1)-(P, ϑ)-separative whenever the

2 The “invariant” really follows.
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following condition (~)P,ϑΓ holds and for simplicity we assume ϕ=(x, y, ā=) is

equality on its domain3.

(~)P,ϑΓ For every ℵ2– compact4 τ -model M and every interpretation ϕ̄ =

〈ϕR(ȳR, āR) : R ∈ τ(t)〉 of t in M and a set X ⊆ |M | of cardinality at

most ℵ1, including all parameters of ϕ̄ we have:

if N ≺ M , X ⊆ |N |, ‖N‖ ≤ ℵ1, and p(x) is a Γψ[ϕ̄]-big type over

N , |p(x)| ≤ ℵ1, and a1, a2 are distinct members of |M | \ |N | with

(recalling 1.1(5))

M |= ϕP [a1, āP ] ∧ ϕP [a2, āP ],

then the type p(x) ∪ {ϑ(a1, x) ↔ ¬ϑ(a2, x)} is Γψ[ϕ̄]–big.

We now define the main bigness notion used

Definition 1.5 (See [Sh:e, Definitions 3.4, 3.5, Chapter XI]): (1) tind = tind
0 is

the first order theory in vocabulary τ(tind) = {P,Q,R}, where P,Q are unary

predicates and R is a binary predicate, including sentences

(∀x)(∀y)(x R y → P (x) ∧ Q(y)), and (∀x)(P (x) ∨Q(x))

and saying that for each n < ω and any pairwise distinct elements a1, . . . , a2n ∈

P , there is c ∈ Q such that

ai R c if and only if i ≤ n.

tind
1 is tind

0 plus

(∀x)(∀y)(∃z)
(

Q(x) ∧ Q(y) ∧ x 6= y → P (z) ∧ (z R x ≡ ¬z R y)
)

.

(2) We define a pre tind-bigness notion scheme Γind as follows. The sentence

ψind says that P ∗ ⊆ Q and (P,Q,R, P ∗) satisfies:

for every n < ω, there is a finite set A ⊆ P such that for every

distinct a1, . . . , a2n ∈ P \A there is c ∈ P ∗ satisfying

a` R c for ` ≤ n, and ¬(a` R c) for n < ` ≤ 2n.

(So ψind is not first order.)

3 Otherwise we should inside (~)P,ϑ
Γ , demand further that for any c ∈ N we have M |=

¬ϕ=(c, a1, ā=) ∧ ¬ϕ=(c, a2, ā=) ∧ ¬ϕ=(a1, a2, ā=).
4 A model M is called κ-compact if every type over it of cardinality < κ is realized; if we

omit κ we mean the cardinality of the model



Vol. 166, 2008 VIVE LA DIFFÉRENCE III 71

(3) We say that a first order theory T has the strong independence property

if some5 formula ϑ(x, y) defines a two place relation which is a model of tind
1

with P,Q chosen as the whole model i.e., for M |= T define the τtind
1

-model

M ′, |M ′| = |M | = PM
′

= QM
′

, RM
′

= {(a, b) : M |= ϑ(a, b)}

In such case we may also say “ϑ(x, y) has the strong independence properties

(for T)”

Plainly,

Proposition 1.6: (1) For a model M of tind
1 , an automorphism π of M is

determined by π � PM (i.e., if π1, π2 ∈ Aut(M) are such that π1 � PM =

π2 � PM , then π1 = π2).

(2) Moreover, if ϕ̄ is an interpretation of tind
1 in M∗, M = M∗[ϕ̄], π ∈ Aut(M)

and π � PM is definable in M∗ (with parameters in M∗), then so is π.

Proposition 1.7 (See [Sh:e, Chapter XI, §3] and [Sh107]): ψind is a tind-bigness

notion scheme. It is (ℵ2,ℵ1)-(P, ϑ)–separative where P ∈ τ(tind
0 ) is given and

we choose ϑ(y, x) := y R x.

Definition 1.8: A mapping F : N1 −→ N2 is a ∆–embedding from N1 to

N2 whenever ∆ is a set of formulas in Lω,ω(τ(N1) ∩ τ(N2)) and

if ϕ ∈ ∆ and N1 |= ϕ[a1, . . . , an],

then N2 |= ϕ[F (a1), . . . , F (an)].

(of course, if ∆ is closed under negation, then we have “if and only if”.)

2. The forcing notion App

As explained in the introduction, we work in a Cohen generic extension of a

suitable ground model. In this section we present how that suitable ground

model can be obtained: we start with V |= GCH and we force with the forcing

notion App from Definition 2.4 below, the App comes for approximations, as

the members are approximations to a name for an ultrafilter as we desire.

Definition 2.1: (1) The Cohen forcing of adding ℵ3 Cohen reals is denoted

by Cℵ3 . Thus a condition p in Cℵ3 is a finite partial function from ℵ3 × ω to

ω, and the order of Cℵ3 is the natural one. The canonical Cℵ3-name for β-th

Cohen real will be called x
˜
β .

5 Of course ϑ(x̄, ȳ), lg(x̄) = m = lg(ȳ) can serve as well.
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(2) Let A ⊆ ℵ3. For a condition p ∈ Cℵ3 , its restriction to A × ω is called

p � A, and we let Cℵ3 � A = CA = {p � A : p ∈ Cℵ3}. Also, we let ω
˜
∗
A =

(ωω)V
C
ℵ3

�A

.

(3) For a sequence 〈An : n < ω〉 of non-empty sets (and A ⊆ ℵ3), we define

∏A

n<ω

An =

{

f ∈ VCℵ3
�A :f is a function with domain ω,

and such that f(n) ∈ An for every n,

}

,

and similarly for models.

(4) For A ⊆ ℵ3 and m < ω, let ImA be the set of all ω-sequences of canonical

CA-names for subsets of mω. Let Qs̄ (for s̄ ∈ ImA , m < ω) be an m-ary predicate,

Qs̄0 6= Qs̄1 whenever s̄0 6= s̄1 i.e., even when they are forced to be equal they

may be different as sequences of names, and let

τA = {Qs̄ : s̄ ∈ ImA & m < ω}

(so because of the demand “canonical”, |τA| = ℵ1 · |A|). Let M
˜
n
A be a CA-

name for the τA-model with universe ω such that if s̄ = 〈s
˜
n : n < ω〉 ∈ ImA ,

then CA
(Qs̄)

M
˜

n
A = s

˜
n. So the vocabulary τA is an object in V, not a name.

(5) If A1 ⊆ A2, and for ` = 1, 2 F
˜
` is a CA`

- name of an ultrafilter on ω

then F
˜

1 = F
˜

2 � A1 means that C�A2 F
˜

1 ⊆ F
˜

2, so F
˜

2 � A1 is unique but not

always well defined.6

In the definition below the reader can restrict himself to the case t = tind,

ψ
˜

= ψind, see Definition 1.5 (so later in Definition 2.4 we use only Γ = Γind)

Definition 2.2: (1) A function G is called an (ℵ3,ℵ2)-bigness guide if the

domain Dom(G) of G is
{

(A,F
˜

) :A ⊆ ℵ3, |A| ≤ ℵ1, and

F
˜

is a CA–name of a non principal ultrafilter on ω

}

,

and

(α) G(A,F
˜

) is a non-empty set of triples (t, ψ
˜
, ϕ̄
˜

), where7 t is a (countable)

first order theory (or just a CA-name of a (countable) first order theory),

6 As for CA1
-name A

˜
of a subset of ω, the truth value of “A

˜
∈ F

˜
2” is an CA2

-name but

in general not a CA1
-name.

7 Note that our forcing App will add no reals so since we are considering only countable

t, we can use only old ones. As we may consider names in the Cohen forcing, things are

different so we allow such names.
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ψ
˜

is a CA-name of t-bigness notion scheme, and ϕ̄
˜

is (a CA-name for)

an interpretation of t in
∏A

n<ωM˜
n
A/F˜

, and |G(A,F
˜

)| ≤ ℵ2, and

(β) if (A`,F
˜
`) ∈ Dom(G) for ` = 1, 2, A1 ⊆ A2 and CA2

F
˜

1 ⊆ F
˜

2, then

G(A1,F
˜

1) ⊆ G(A2,F
˜

2).

(2) An (ℵ3,ℵ2)-bigness guide G is ind-full if

(γ) for every (A,F
˜

) ∈ Dom(G) and a canonical CA-name ϕ̄
˜

for an interpre-

tation of tind in
∏A

n<ωM˜
n
A/F˜

we have (tind, ψind, ϕ̄
˜

) ∈ G(A,F
˜

).

(3) We say that G is full whenever the following condition holds.

(�) Assume (A,F
˜

) ∈ Dom(G) and t
˜

is a canonical CA-name of a (countable)

first order theory in the vocabulary τ(t
˜
) ∈ H(ℵ1), ψ

˜
is a canonical CA-

name for a pre t
˜
-bigness notion scheme, ψ

˜
∈ Lℵ1,ℵ1(τ(t

˜
) ∪ {P ∗}). Let ϕ̄

˜
be a CA-name for an interpretation of t

˜
in

∏A

n<ωM˜
n
A/F˜

; no need for

parameters as all elements are interpretation of an individual constant.

Suppose (t
˜
, ψ
˜
, ϕ̄
˜

) is forced to define a bigness notion8 Γ = Γ(t
˜
,ψ
˜
,ϕ̄
˜
). Then

(t
˜
, ψ
˜
, ϕ̄
˜

) ∈ G(A,F
˜

).

The clause 2.2(2) is added for our particular application. It can be replaced

by the use of a family of bigness notions relevant to your interest.

Proposition 2.3: (1) There is a full (ℵ3,ℵ2)-bigness guide G.

(2) If a bigness guide G is full, then it is ind-full.

(3) Full and even just ind-full implies non-emptiness, i.e., G(A,F
˜

) 6= ∅ when

defined.

Proof. Trivial.

Definition 2.4: Let G be an (ℵ3,ℵ2)-bigness guide. We define the forcing notion

App = AppG. (When G is fixed, as typically in the present paper, we may and

usually will not mention it.)

(1) A condition q in App is a triple q = (A,F
˜
, Γ̄
˜

) = (Aq,F
˜
q, Γ̄

˜
q) such that:

(a) A is a subset of ℵ3 of cardinality ≤ ℵ1;

(b) F
˜

is a canonical CA-name of a nonprincipal ultrafilter on ω, such that

for β < ℵ3,

F
˜

� (A ∩ β)
def
= F

˜
∩ {a

˜
: a
˜

is a CA∩β-name of a subset of ω }

is a CA∩β-name (of an ultrafilter on ω);

8 We can fix a Cℵ3
-name of countable first order theory.
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Why “canonical”? for the same reasons as in 2.1(4)

(c) Γ̄
˜

= 〈Γ
˜
β : β ∈ A & cf(β) = ℵ2〉, where each Γ

˜
β is a local bigness notion

Γψ
˜

[ϕ̄
˜

] for some (t, ψ
˜
, ϕ̄
˜

) ∈ G(A ∩ β,F
˜

� (A ∩ β));

(d) If cf(β) = ℵ2, β ∈ A, then it is forced (i.e., Cℵ3
equivalently CA

)

that:

the type realized by the element x
˜
β in the model

∏A

n<ωM˜
n
A∩β/F˜

over the model
∏A∩β

n<ωM˜
n
A∩β/

(

F
˜

� (A ∩ β)
)

(so it is a type in

the vocabulary τA∩β) is Γ
˜
β-big and complete of course, and moreover

this type is a CA∩β-name; actually we should say “by the element

x
˜
β/(F

˜
� A)”. We call it “the type induced by x

˜
β according to q”.

(2) The order ≤App = ≤ of App = AppG is the natural one: q1 ≤ q2 if

and only if Aq1 ⊆ Aq2 , CA
q2

F
˜
q1 ⊆ F

˜
q2 , and Γ̄

˜
q2 � Aq1 = Γ̄

˜
q1 .

(3) We say that q2 ∈ App is an end extension of q1 ∈ App, and we write

q1 ≤end q2, if q1 ≤ q2, q1 = q2 � β and sup(Aq1) ≤ β = min(Aq2 \ Aq1).

(4) For a condition q ∈ App and an ordinal β ∈ ℵ3 we define q � β =
(

Aq ∩ β,F
˜
q � (Aq ∩ β), Γ̄

˜
q � (Aq ∩ β)

)

.

(5) For β < ℵ3 we let App � β = Appβ = {q ∈ App : Aq ⊆ β} with inherited

order. If G ⊆ App is generic over V, then we let G � β = G ∩ (App � β).

One easily checks that

Proposition 2.5: (1) If q ∈ App, β < ℵ3, then q � β ∈ App and q � β ≤end q.

(2) Both ≤App and ≤end are partial orders, (pedantically quasi orders) on App.

Lemma 2.6: If 〈qζ : ζ < ξ〉 is an increasing sequence of members of App, ξ ≤ ℵ1,

and qζ1 ≤end qζ2 for ζ1 < ζ2, then there is q ∈ App such that Aq =
⋃

ζ<ξ Aqζ

and qζ ≤end q for all ζ < ξ.

Proof. We can assume that ξ > 0 is a limit ordinal. If cf(ξ) > ℵ0, then we

let Aq =
⋃

ζ<ξ A
qζ , F

˜
q =

⋃

ζ<ξ F˜
qζ and Γ̄

˜
q =

⋃

ζ<ξ Γ̄
˜
qζ . If cf(ξ) = ℵ0, then

additionally we have to extend
⋃

ζ<ξ F˜
qζ to a CAq -name of an ultrafilter on ω,

which is no problem.

Lemma 2.7: Suppose that q ∈ App, Aq ⊆ γ ∈ ℵ3, and p
˜

is a CAq -name of a

type over the model
∏Aq

n<ωM˜
n
Aq/F

˜
q (so the type p

˜
= p

˜
(x) is in the vocabulary

τAq , finitely satisfiable in
∏Aq

n<ωM˜
n
Aq/F

˜
q). Then:
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(1) If cf(γ) < ℵ2, then there is a condition r ∈ App stronger than q such that

Ar = Aq ∪ {γ}, and

CAr “x
˜
γ/F

˜
r realizes p

˜
in

∏Ar

n<ω

M
˜
n
Ar/F

˜
r”.

(2) If cf(γ) = ℵ2, (t
˜
, ψ
˜
, ϕ̄
˜

) ∈ G(Aq,F
˜
q) and the type p

˜
is (forced to be) Γψ

˜
[ϕ̄
˜

]-

big, then there is a condition r ∈ App as in (1) and such that Γ
˜
r
γ = Γψ

˜
[ϕ̄
˜

].

Proof. 1) Extend F
˜
q to F

˜
r so that x

˜
γ/F

˜
r realizes the required type, (using

“x
˜
γ is Cohen over VC�A”).

2) Note that every Γψ
˜

[ϕ̄
˜

]-big type can be extended to a complete Γψ
˜

[ϕ̄
˜

]- big

one by 1.2 and the proof of 2.8(1) below.

Lemma 2.8: (1) Suppose q0, q1, q2 ∈ App, q0 = q2 � β, q0 ≤ q1, Aq1 ⊆ β.

Suppose further that Aq2 \Aq0 = {β} and cf(β) = ℵ2. Assume further that p
˜

1 is

a CAq1 -name for a complete Γ
˜

q2
β -big type over (

∏Aq1

n<ωM˜
n
Aq1 /F

˜
q1) such that

p
˜

1 contains the type p
˜

0 induced by x
˜
β according to q2 (such p1 necessarily exists,

by the properties of bigness). Then there is q3 ≥ q1, q2 with Aq3 = Aq1 ∪ {β},

such that x
˜
β induces p

˜
1 on (

∏Aq1

n<ωM˜
n
Aq1 /F

˜
q1) (according to q3).

(2) Assume q0, q1, q2 ∈ App, q0 = q2 � β, q0 ≤ q1 and Aq1 ⊆ β. If Aq2 \

Aq0 = {β} and cf(β) < ℵ2, then there is q3 ∈ App, q3 ≥ q1, q2 such that

Aq3 = Aq1 ∪ Aq2 . This clause is like the first one except the cofinality.

(3) Assume that δ1, δ2 < ℵ2, and 〈βj : j < δ2〉 is a non-decreasing sequence

of ordinals below ℵ3. Let 〈pi : i < δ1〉 be an ≤-increasing sequence from App.

Suppose that qj ∈ App � βj (for j < δ2) are such that:

pi � βj ≤ qj for i < δ1, j < δ2,

qj ≤end qj′ for j < j′ < δ2.

Then there is an r ∈ App with pi ≤ r and qj ≤end r for all i < δ1 and j < δ2.

(4) If p̄ = 〈pi : i < δ1〉 an increasing sequence in App, δ1 < ℵ2, then p̄ has an

upper bound in App. If cf(δ1) = ℵ1 we use the (naturally defined) union.

(5) Assume

(a) γ is a limit ordinal of cofinality ℵ0

(b) p ∈ Appγ and p
˜

is a CAp -name of a finitely satisfiable set of formulas

in one free variable x over
∏Ap

n<ωM˜
n
Ap/F

˜
p

(c) γn ∈ γ \ Ap, γn < γn+1 and γ =
⋃

{γn : n < ω}

Then there is q such that
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(α) p ≤ q ∈ Appγ
(β) Aq = Ap ∪ {γn : n < ω}

(γ) CAq “p
˜

is realized in
∏Aq

n<ωM˜
n
Aq/F

˜
q”

Proof. 1) Note that this is a strong form of the ℵ2-c.c., see the proof of 2.9

below. Let Ai = Aqi and let F
˜
i = F

˜
qi for i < 3, and A3 = A1∪A2 = A1∪{β}.

Possibly the only not clear part is to show that, in VCA3 , there is an ultrafilter

extending F
˜

1 ∪ F
˜

2 which contains F
˜

′, the family of all the sets

{n < ω : M
˜
n
A3

|= ϕ
˜

[x
˜
β(n), ā

˜
(n)]}

for ϕ
˜

(x, ȳ) ∈ p
˜

1, `g(ȳ) = m, and a CA1 -name ā
˜

of an m-tuple from ω
˜
∗
A1

(and

in our notation above ā
˜

(n) is a CA1 -name for an m-tuple of elements of ω, so

pedantically we define ā
˜

= 〈a
˜
` : ` < m〉, a

˜
` = 〈a

˜
`(n) : n < ω〉 where a

˜
`(n)

is a (C � A)-name of a natural number and ā
˜

(n) = 〈a
˜
`(n) : ` < m〉 and we

should use below 〈a
˜
`/F

˜
: ` < m〉 instead ā

˜
). As F

˜
1,F

˜
2,F

˜
′ are (forced, i.e.,

CA3
) to be closed under intersections (of two, and hence of finitely many),

clearly if this fails, then (as F
˜

0 is forced to be a non-principal ultrafilter on ω

so m < ω implies  [m,ω) ∈ F
˜

0) there are a condition p ∈ CA3 , a CA1 -name

a
˜

of a member of F
˜

1, a CA2 -name b
˜

of a member of F
˜

2, a (CA1 -name for a)

τA1 -formula ϕ
˜

and a CA1 -name for an m-tuple ā
˜

from ω
˜
∗
A1

such that

p � A1 CA1
“ϕ
˜

(x, ā
˜

) ∈ p
˜

1” and p CA3
“a
˜
∩ b

˜
∩ c

˜
= ∅”,

where

c
˜

= {n : M
˜
n
A3

|= ϕ
˜

[x
˜
β(n), ā

˜
(n)]}.

We may easily eliminate parameters, so we may assume that we have ϕ
˜

[x
˜
β(n)]

only (remember the definition of τA1). Let pi = p � Ai for i = 0, 1, 2, and

let H0 ⊆ CA0 be generic over V such that p0 ∈ H0. For n < ω let A
˜
∗
n be a

CA0 -name such that

A
˜

∗
n[H0] =

{

y ∈M
˜
n
A2

:there is p′2 ∈ CA2 such that p2 ≤ p′2, p
′
2 � A0 ∈ H0

and p′2  “ x
˜
β(n) = y and n ∈ b

˜
”

}

(recall y ∈ M
˜
n
A2

means y ∈ ω). Let A
˜

∗ =
∏A0

n<ω A˜
∗
n/F

˜
0. So A

˜
∗[H0] is

(the interpretation of) an unary predicate from τA0 ; in fact Q〈A
˜

∗
n:n<ω〉 is such

a predicate, but we shall write A
˜

∗(x) instead Q〈A
˜

n:n<ω〉(x). Thus, in V[H0],

either A
˜

∗(x) ∈ p
˜

0 or ¬A
˜

∗(x) ∈ p
˜

0. The latter is impossible by the choice of
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A
˜

∗, so necessarily A
˜

∗(x) ∈ p
˜

0. As also p � A1 CA1
“ϕ
˜

(y) ∈ p
˜

1”, clearly if

H1 ⊆ CA1 is generic over V and H0 ∪ {p1} ⊆ H1, then in V[H1] we have

{n ∈ ω : M
˜
n
A1

|= (∃y)
(

A
˜

∗(y) & ϕ
˜

(y)
)

} ∈ F
˜

1[H1]

(remember p
˜

1 is a type over
∏Aq1

n<ωM˜
n
Aq1 /F

˜
1 extending p

˜
0). Consequently,

we may find a condition p′1 ∈ H1 ⊆ CA1 stronger than p1, an integer n < ω,

and an element y ∈M
˜
n
A1

(so y ∈ ω) such that

p′1 � A0 ∈ H0, and p′1 CA1
“M

˜
n
A1

|=
(

A
˜

∗(y) & ϕ
˜

(y)
)

and n ∈ a
˜

”.

As A
˜

∗
n is a CA0-name, we really have y ∈ A

˜
∗
n[H0], and hence (by its definition)

for some p′2 ∈ CA2 we have

p2 ≤ p′2, p′2 � A0 ∈ H0, and p′2  “y = x
˜
β(n) and n ∈ b

˜
”.

Now for our n we can force n ∈ a
˜
∩ b

˜
∩ c

˜
by amalgamating the corresponding

conditions p′1, p
′
2, getting a contradiction. As said above this finishes the proof

of the existence of q3.

2) The proof is essentially contained in the previous one (use the very trivial

bigness notion: ϕ(x, ā) is big in M if and only if M |= (∃x)ϕ(x, ā), so we may

use a p
˜

1). See also the end of the proof of (3).

3) We will prove by induction on γ ∈ ℵ3 that if all βj ≤ γ and all pi belong

to App � γ, then the assertion in (3) holds for some r ∈ App � γ.

We may assume that δ1 > 0 (otherwise apply 2.6) and δ2 > 0 (otherwise let

δ′2 = 1, β0 = 0, q′0 ∈ App � 0 be above pi � 0 for i < δ1; so it just means F
˜
q′0 is

an ultrafilter extending F
˜
pi�0 for i < δ1; now if γ = 0, then r = q′0 is as required

and otherwise we have reduced the case δ2 = 0 to the case δ2 = 1).

We may assume that βj = sup{α + 1 : α ∈ Aqj} (for j < δ2), and also that

the sequence 〈βj : j < δ2〉 is strictly increasing. Let β = supj<δ2 βj and let

q = (
⋃

j<δ2
Aqj ,

⋃

j<δ2
F
˜
qj ,

⋃

j<δ2
Γ̄
˜
qj ), this triple is not necessarily a member

of App.

We first deal with

Case 1: cf(γ) 6= ℵ0.

If γ = β, then q ∈ App and we may take r = q. So let us assume β < γ. If

δ2 is a successor ordinal, or a limit ordinal of uncountable cofinality, then we

let q∗ = q (clearly q∗ ∈ App � β). If cf(δ2) = ℵ0, then we may first apply the

inductive hypothesis to 〈pi � β : i < δ1〉 (and 〈βj , qj : j < δ2〉) to get a condition
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q∗ ∈ App � β which is stronger than all pi � β and which end-extends all qj .

So in all these cases, we have a condition q∗ ∈ App � β end extending all qj

for j < δ2 and stronger than all pi � β for i < δ1 (and we are looking for an

end-extension of it which is a bound to all pi � β). The following three subcases

suffice as we have already dealt with the possibility γ = 0.

The Subcase 1A. γ = γ0+1 is a successor. In this case our inductive hypothe-

ses applies to the pi � γ0, q
∗, and γ0, yielding r0 in App � γ0 with pi � γ0 ≤ r0

for i < δ1 and q∗ ≤end r0. What remains to be done is an amalgamation of r0

with all of the pi, where Api ⊆ Ar0 ∪ {γ0}, and where one may as well suppose

that γ0 is in Api for all i. This is a slight variation on (1) or (2). For instance,

suppose cf(γ0) = ℵ2. We let

• A2 =
⋃

i<δ1
Api , A0 = A2 \ {γ0}, A1 = Ar0 , A3 = A2 ∪ A1.

• F
˜

1 = F
˜
r0 , F

˜
2 =

⋃

i<δ1
F
˜
pi . (The latter might be only a CA2 -name of a

filter).

• For i < δ1 let p
˜

i be the CApi∩γ0-name for the Γ
˜
pi
γ0

-big type induced

by x
˜
γ0 over the model

∏Api∩γ0
n<ωM˜

n
Api∩γ0

/F
˜
pi�γ0 . Then let p

˜
0 =

⋃

i<δ1
p
˜

i, and note that it is a CA0-name for a Γ
˜
pi
γ0

-big type over the model
∏A0

n<ωM˜
n
A0
/F

˜
0.

• Let p
˜

1 be (a CA1 -name for) a complete Γ
˜
pi
γ0

-big type over
∏A1

n<ωM˜
n
A1
/F

˜
0

extending p0
˜

. (Exists by 1.2; the role of p1
˜

is to be the type which xγ0
realizes over

∏A1

n<ωM˜
n
A1
/Fr0 according to a condition r which we will

choose below so necessarily it extends
⋃

i<δ1
pi

˜
).

Now, in VCA3 , we would like to extend F
˜

1 ∪ F
˜

2 to an ultrafilter F ′ containing

the sets of the form {n < ω : M
˜
n
A3

|= ϕ
˜

[x
˜
γ0(n)]} for all ϕ

˜
(x) ∈ p

˜
1. If this fails,

then as

CA1
“〈F

˜
pi : i < δ1〉 is increasing”

we find a condition p ∈ CA3 , a CA1 -name a
˜

of a member of F
˜

1, and i < δ1, and

a CA2-name b
˜

for a member of F
˜
i, and ϕ

˜
such that

p � A1  “ϕ
˜

(x) ∈ p
˜

i ⊆ p
˜

1” and p CA3
“a
˜
∩b

˜
∩ {n : Mn

A3
|= ϕ

˜
[xβ(n)]} = ∅”.

Next, we continue exactly as in the proof of (1).

The Subcase 1B. γ is a limit ordinal of cofinality ℵ2.

Since δ1 < ℵ2 there is some γ0 < γ such that all pi lie in App � γ0 and β < γ0,

and the induction hypothesis then yields the claim.
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The Subcase 1C. γ is a limit ordinal of cofinality ℵ1.

Choose a strictly increasing and continuous sequence 〈γj : j < ℵ1〉 with supre-

mum γ, starting with γ0 = β. By induction on j choose rj ∈ App � γj (for

j < ℵ1) such that:

• r0 = q∗;

• rj ≤end rj′ for j < j′ < ℵ1;

• pi � γj ≤ rj for i < δ1 and j < ℵ1.

(Thus, at a successor stage j + 1, the inductive hypothesis is applied to pi �

γj+1, rj , γj , and γj+1. At a limit stage j, we apply the inductive hypothesis

to pi � γj for i < δ1, rj′ for j′ < j, γj′ for j′ < j, and γj .) Finally, we let

r = (
⋃

j<ℵ1
Arj ,

⋃

j<ℵ1
F
˜
rj ,

⋃

j<ℵ1
Γ̄
˜
rj ). Clearly r ∈ App is as required.

Now we are going to consider the remaining case:

The case 2. γ is a limit ordinal of cofinality ℵ0.

If β < γ (where β is as defined at the beginning of the proof), then we first

pick a strictly increasing sequence 〈γj : j < ℵ0〉 of ordinals such that β ≤ γ0 and

supj<ℵ0
γj = γ. Then we apply repeatedly the inductive hypothesis to build

a sequence 〈q′j : j < ℵ0〉 such that q′j ∈ App � γj , q
′
j0

≤end q′j1 for j0 < j1,

qj ≤end q′0 (for all j < δ2), and pi � γj ≤ q′j (for all i < δ1, j < ℵ0). Thus

we have reduced this sub-case to the only one remaining: β = γ. Now if for

some j < δ2 we have βj = γ, then r = qj is as required, so without loss of

generality (∀j < δ2)(βj < γ). Then necessarily cf(δ2) = ℵ0 and we may equally

well assume that δ2 = ℵ0.

We take q as defined earlier (so it is the “union” of all qj), but it does not

have to be a condition in App: the filter
⋃

j<ℵ0
F
˜
qj does not have to be an

ultrafilter, and we need to extend it to one that contains also
⋃

i<δ1
F
˜
pi . Note

that A∗ def
=

⋃

i<δ1
Api ⊆

⋃

j<ℵ0
Aqj

def
= A+, but there might be CA∗ -names for

elements of
⋃

i<δ1
F
˜
pi that are not CA

qj -names for any j < ℵ0, so seemingly

it could happen that one name like that is forced to be disjoint from some

element of F
˜
qj . Still, also here

⋃

j<ℵ0
F
˜
qj is closed under finite intersection and

similarly
⋃

i<δ1
F
˜
pi . So assume toward contradiction, that there are a condition

p ∈ CA+ , ordinals i < δ1 and j < ℵ0, a CApi -name a
˜

, and a CA
qj -name b

˜
such

that

p C
A+ “a

˜
∈ F

˜
pi & b

˜
∈ F

˜
qj & a

˜
∩ b

˜
= ∅”.
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Increasing j if necessary, we may also assume that p ∈ CA
qj so Dom(p) ⊆ βj×ω.

Let H0 ⊆ CApi∩βj
be generic over V such that p � Api ∈ H0, and let

c =

{

n ∈ ω :there is a condition p′ ∈ CApi stronger than p � Api and

such that p′ � (Api ∩ βj) ∈ H0 and p′ C
A

pi
“n ∈ a

˜
”

}

.

Clearly, c ∈ V[H0] is a set from
(

F
˜
pi � (Api ∩ βj)

)

[H0]. Since pi � βj ≤ qj , we

find a condition p′′ ∈ CA
qj and n ∈ c such that

p ≤ p′′ & p′′ � (Api ∩ βj) ∈ H0 & p′′ C
A

qj
“n ∈ b

˜
”.

For this n we find p′ ∈ CApi witnessing that n ∈ c (i.e. p′ � (Api ∩ βj) ∈ H0

and p′ C
A

pi
“n ∈ a

˜
”) and next we let p∗ = p′ ∪ p′′. Clearly p∗  n ∈ a

˜
∩ b

˜
, a

contradiction.

4) Follows, i.e., it is the case δ2 = 0 of part (3).

5) We choose qn ∈ Appγn
for n < ω such that

Aqn := Ap ∪ {γ` : ` < n}, p � γn ≤ qn and qn ≤end qn+1 for n < ω and let

A =
⋃

{Aqn : n < ω}

This is possible as for n = 0 let qn = p � γn+1, for n = k + 1, let q′n ∈ App

be such that Aq′n = Aqk ∪ {γn} and qk ≤end q
′
n, exists by 2.7, and then qn as

required exists by 2.8(1).

Let x
˜

be the following CA-name of an ω-sequence:

x
˜

= 〈x
˜
γn

(n) : n < ω〉.

Now we shall choose q such that Aq =A=
⋃

{Aqn :n<ω}=Ap ∪ {γn :n<ω},

n < ω ⇒ qn ≤end q and p ≤ q and CA
“x
˜

realizes p
˜

”.

Again the only problem is to find a CA-name of an ultrafilter on ω which

include

F
˜
p ∪

⋃

{F
˜
qn : n < ω} ∪ {{n : M

˜
n
Ap |= ϕ(x

˜
(n))} : ϕ(x) ∈ p

˜
}

Since without loss of generality p
˜

is closed under conjunction it is enough to

show that:

~ if a
˜

is a CAp-name of a member of F
˜
p, n < ω, b

˜
is a CAqn -name of a

member of F
˜
qn ϕ

˜
(x) is a CAp-name of a formula from p

then CA
“a
˜
∩ b

˜
∩ {n : MAp |= ϕ

˜
(x
˜

(n))} 6= ∅”. As in previous cases this

is easy.

Lemma 2.9: Assume V |= GCH. The forcing notion App satisfies the ℵ3-chain

condition, it is ℵ2-complete, |App| = ℵ3 and |App � γ| ≤ ℵ2 for every γ ∈ ℵ3.
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Consequently, the forcing with App does not collapse cardinals nor changes

cofinalities, and App GCH.

Proof. Perhaps the only unclear part is the chain condition. Suppose towards

a contradiction that we have an antichain {qα : α ∈ ℵ3 & cf(α) = ℵ2} ⊆ App

(the index α is taken to vary over ordinals of cofinality ℵ2 just for convenience).

An important point is that G can “offer” at most ℵ2 candidates for the big-

ness notion at δ < ℵ3, cf(δ) = ℵ2, hence for each γ ∈ ℵ3 the restricted forc-

ing App � γ has cardinality ≤ ℵ2. Applying Fodor’s lemma twice, we find a

stationary set S ⊆ {α ∈ ℵ3 : cf(α) = ℵ2} and a condition q∗ ∈ App such

that (∀α ∈ S)(qα � α = q∗). Pick α1, α2 ∈ S such that sup(Aqα1 ) < α2;

it follows from Lemma 2.8(3) that the conditions qα1 , qα2 are compatible, a

contradiction.

Proposition 2.10: (1) For each p ∈ App and α ∈ ℵ3, there is a condition

q ∈ App stronger than p and such that α ∈ Aq.

(2) F
˜

def
=

⋃

{F
˜
r : r ∈ G

˜
App} is an App-name of a Cℵ3-name for a non-principal

ultrafilter on ω. Also, for each r ∈ G
˜

App we have: F
˜
∩ P(ω)(V[G

˜
App])C

Ar

=

F
˜
r.

Proof. Should be clear (for (1) use 2.7 + 2.8(3); then (2) follows).

Definition 2.11: (1) Suppose GApp ⊆ App is generic over V, V∗ = V[GApp].

For α ≤ ℵ3 we let Gα = GApp∩ (App � α). It is a generic subset of App � α;

let F
˜
α be the (App � α)-name of the Cα-name

⋃

{F
˜
q : q ∈ Gα}. Note:

F
˜
q being a CAq -name is a Cα-name when Aq ⊆ α. So in V∗ the sequence

〈F
˜
α : α < ℵ3〉 is forced (i.e. C) to be increasing, let F

˜
= F

˜
ℵ3 so F

˜
α is the

Cα-name for the restriction F
˜

� α of the ultrafilter F
˜

to the sets from the

universe (V∗)Cα .

(2) We define an App-name Γ
˜
δ of a Cδ-name as Γpδ for every p ∈ G

˜
App such

that δ ∈ Ap. (So it is an App ∗ Cδ-name.)

Lemma 2.12: (1) Suppose that GApp ⊆ App is generic over V, V∗ = V[GApp],

and δ < ℵ3, cf(δ) = ℵ2, and Hδ ⊆ Cδ is generic over V∗. Then, in

V[GApp ∩ (App � δ)][Hδ], we have9:
∏

n<ωM˜
n
δ /F˜

δ[Hδ] is ℵ2-compact.

(2) Also if H ⊆ Cℵ3 is generic over V∗, H ⊇ Hδ, then in V∗[H ]:

(a)
∏

n<ωM˜
n
ℵ3
/F

˜
[H ] is ℵ2–compact,

9 Note: M
˜

n
δ

is M
˜

n
A

for A = δ.
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(b) x
˜
δ[H ]/F

˜
[H ] ∈

∏

n<ωM˜
n
ℵ3
/F

˜
[H ] realizes a Γ

˜
δ[G][Hδ]-big type over

∏δ
n<ωM˜

n
δ /F˜

δ[Hδ].

Proof. By 2.7(1)+2.7(2). We can use some x
˜
β with β of cofinality less than ℵ2

to realize each type.

3. Definability

Hypothesis 3.1: In this section we assume that G is an (ℵ3,ℵ2)-bigness guide,

App = AppG, G∗ ⊆ App is a generic filter over V, and V∗ = V[G∗]. For an

ordinal α < ℵ3, we let G∗
α = G∗ ∩ (App � α). Also, H

˜
, H

˜
α are the canonical

Cℵ3 -and Cα-names of the generic subsets of Cℵ3 and Cα, respectively. We work

mostly in V∗.

(Note that, by Lemma 2.9, V∗ |= GCH.)

Definition 3.2: (1) We say that m is an (ℵ3,ℵ2)-isomorphism candidate (or

just an isomorphism candidate, in V or in V∗, see below) if;

(i) m consists of A∗ = A∗[m] ∈ [ℵ3]<ℵ2 , p∗ = p∗[m], N
˜
`
n = N

˜
`
n[m],

t
˜
`
n (for n < ω, ` ∈ {1, 2}), F

˜
= F

˜
[m], Γ

˜
= Γ

˜
[m] and (t

˜
, ψ
˜
, ϕ̄
˜
,∆
˜

) =

(t
˜
[m], ψ

˜
[m], ϕ̄

˜
[m],∆

˜
[m]),

(ii) t
˜
, ψ
˜
, ϕ̄
˜

are CA∗ -names as in 2.2(1), ∆
˜

⊆ L(τ(t
˜
)) is a CA∗ -name, equal-

ity belongs to it, and Γ
˜

= Γ
˜

(t
˜
,ψ
˜
,ϕ̄
˜
,) is a bigness notion as there, τ(t

˜
)

is countable; we can assume τ(t
˜
) is an object (not a name) by adding

for each m,ℵ0 predicates with m places said (by t
˜
) to be empty.

(iii) N
˜
`
n, for n < ω and ` ∈ {1, 2}, are CA∗ -names for countable mod-

els of a (countable) theory t
˜
`
n, and the universes |N

˜
`
n| are subsets

of ω and with vocabulary τ(t
˜
). Also it is forced (i.e., Cℵ3

) that

t
˜

⊆ Th
(

∏

n<ω N˜
1
n/F

˜

)

= Th
(

∏

n<ω N
2
n/F

˜

)

, where the
∏

n<ω is
∏ℵ3

n<ω. Note that we cannot require that t
˜
`
n = t

˜
, as t

˜
may be infinite,

(e.g. tind
0 is) and no N `

n is a model of t
˜
.

(iv) We have predicates Q`R ∈ τA∗ (for R ∈ τ(t
˜
)) such that ϕ̄

˜

` = 〈Q`R :

R ∈ τ(t)〉 is the interpretation of τ(t
˜
) in

∏A∗

n<ωM˜
n
A∗/F

˜
giving

∏

n<ω N˜
`
n/F

˜
and ϕ̄ = ϕ̄1. (Remember 2.1(4), 1.4(1); so by the choice

of τA∗ actually ϕ̄
˜

` = ϕ̄`.)

(v) F
˜

is a Cℵ3 -name (more accurately an App-name of such name, but

we sometimes write F
˜

instead of F
˜

[G∗] as when G∗ is constant) and
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p∗ ∈ Cℵ3 is a condition such that:

p∗ Cℵ3
“F
˜

is a map from
∏

n<ω N˜
1
n into

∏

n<ω N˜
2
n”

p∗ Cℵ3
“F
˜

represents a ∆
˜

–embedding modulo F
˜

”.

(If m is clear from the context we may omit it.)

Remark 3.3: (1) In m, note that ∆
˜

tells us which first order formulas in the

vocabulary τ(t
˜
) does the function F

˜
preserve. In our main case those are

the atomic and negation of atomic formulas in τ ind

(2) Of course, m gives us two interpretations of t in the ultraproduct: one for

` = 1 and another for ` = 2, and the interpreting formulas define N `
n in the

nth coordinate. Without loss of generality the universe of N
˜
`
n is nonempty

for every n < ω (and ` = 1, 2).

Definition 3.4: For m as in 3.2 let m− = 〈t
˜
, ψ
˜
, ϕ̄
˜
,∆
˜
, 〈N

˜
`
n : n < ω, ` = 1, 2〉〉,

those names involve countably many of the Cohens x
˜
β. Also note that as App is

ℵ2-complete, this forcing does not add new m−, i.e., V and V∗ have the same

set of m−, though we have an App-name m
˜

of such object.

Observation 3.5: Assume, in V∗, that m is an (ℵ3,ℵ2)-isomorphism candi-

date, Γ
˜

= Γ
˜

[m] = Γ(t
˜
,ϕ̄
˜
,ψ
˜

). Then there is a stationary set of ordinals δ < ℵ3

such that:

(a)δ A∗ = A∗[m] ⊆ δ ∩ Aq, cf(δ) = ℵ2, and p∗ = p∗[m] ∈ Cδ, and for some

q ∈ G∗ we have that Γ
˜

= Γ
˜

q
δ is Γψ

˜
[ϕ̄
˜

] (for (t
˜
, ψ
˜
, ϕ̄
˜

) from 2.2), so Γ
˜

= Γ
˜
δ

see 2.11(2)

(b)δ for every Cℵ3 � δ-name x
˜

for an element of
∏

n<ω N˜
1
n, F

˜
(x
˜

) is a (Cℵ3 � δ)-

name, (recall App satisfies the ℵ3–c.c)

(c)δ similarly for F
˜

−1 and for “y ∈ Rang(F
˜

)”,

(d)δ Cℵ3
“{n < ω : x

˜
δ(n) ∈ N

˜
1
n} ∈ F

˜
(so x

˜
δ/F

˜
∈

∏

n<ω N˜
1
n/F

˜
)”.

For such δ, we let y
˜

∗ = y
˜

∗
δ = y

˜

∗
δ,F

˜
= y∗δ,m be F

˜
(x
˜
δ) ∈

∏

n<ω N˜
2
n.

Remark: Notice also that the clauses (b)δ, (c)δ of 3.5 above say that F
˜
δ[G∗] is

really a Cδ-name for a function from (
∏

n<ω N˜
1
n)(V

∗)Cδ into (
∏

n<ω N˜
2
n)(V

∗)Cδ

preserving ∆
˜

-formulas; in the main case it is “onto”.

The Main Isomorphism Theorem 3.6: Assume that m is an (ℵ3,ℵ2)–isomor-

phism candidate as in 3.2, and δ < ℵ3 is as in Observation 3.5. Then there are

qδ,Γ
˜
, y
˜

such that
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(a) qδ ∈ App, moreover qδ ∈ G∗, and Γ
˜

= Γ
˜

qδ

δ is Γψ
˜

[ϕ̄
˜

] for (t
˜
, ψ
˜
, ϕ̄
˜

) from 2.2

(the set of choices of qδ is dense and quite closed)

(b) qδ App p
∗ Cℵ3

“F
˜

(xδ) = y
˜

∗”, where y
˜

∗ is a CAqδ -name of a member of
ωω,

(c) A∗ ⊆ Aqδ , Aδ
def
= Aqδ ∩ δ,

(d) in V[G∗
δ ][H˜

δ] we have:

(i) Fδ = F
˜
δ[G

∗
δ ][H˜

δ] is a non-principal ultrafilter on ω.

(ii) The modelMδ =
∏δ

n<ωM
n
δ /Fδ with the vocabulary τδ is ℵ2-compact

where Mn
δ = M

˜
n
δ [G∗

δ ][H
δ] and N `

n = N
˜
`
n[G∗

δ ][H˜
δ].

(iii) The vocabulary τAδ
⊆ τδ is of cardinality ≤ ℵ1.

(iv) MAδ
=

∏Aδ

n<ωM
n
Aδ
/Fqδ�δ[H

˜
δ] ≺Mδ � τAδ

.

(v) p∗ Cδ
“F

˜
δ = (F

˜
� δ)[H

˜
δ] =

(

(F
˜

� δ)[G∗ ∩ (App � δ)]
)

[H
˜
δ] is a

∆
˜

–embedding from the model
∏δ

n<ωN
1
n/Fδ into

∏δ
n<ω N

2
n/Fδ”, re-

calling p∗ = p∗[m]

(vi) Let p
˜
δ = p

˜
δ(x) be the (CAδ

-name of the) 1-type in the vocabulary τAδ

such that qδ App p
∗ Cδ

“p
˜
δ(x) is the type realized by x

˜
δ over MAδ

in
∏

n<ωM
n
Aqδ /F

˜
qδ ”. [Clearly it is a CAqδ -name, or an App ∗ CAqδ -

name; see clause (d) of Definition 2.4(1).]

Clearly qδ App p
∗ Cδ

“p
˜
δ is Γ

˜
–big”.

(vii) For ` = 1, 2 let N
˜
`
δ =

∏δ
n<ω N˜

`
n/F

˜
δ (they are in V∗[H

˜
δ], even in

V[G∗
δ ][H˜

δ]). We define Rδ,m ⊆ (N
˜

1
δ)
m × (N

˜
2
δ)
m for m < ω so that

they are (App � δ) ∗ Cδ- names and (qδ � Aδ, p
∗) forces

(~)1 Rδ,m includes the graph of Fδ, i.e., if ā is an m-tuple from N1
δ ,

then (ā, Fδ(ā)) ∈ Rδ,m,

(~)2 the truth value of (ā, b̄) ∈ Rδ,m depends only on Lω,ω(τAδ
)-type

realized by (ā, b̄) over MAδ
in Mδ,

(~)3 Rδ,m is minimal such that (~)1 and (~)2 hold.

(viii) The relations Rδ,m mentioned above satisfy (i.e. (qδ � Aδ, p
∗) forces):

(⊕)1 if ā1, ā2 are finite sequences of the same length m of members

of N1
δ , and pδ ∪ {ϑN

1
δ (x, ā1),¬ϑN

1
δ (x, ā2)} is a Γ-big type over

Mδ, and ϑ,¬ϑ ∈ ∆
˜

[m], where ϑN
1
δ is ϑ as interpreted in the

interpretation ϕ̄1, then (ā1, Fδ(ā2)) /∈ Rδ,m.

(⊕)2 Above, we may replace ϑ,¬ϑ by any pair ϑ0, ϑ1 of contradictory

formulas from ∆
˜

[m].
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(ix) Note that also

(∗)p
∗

y
˜

∗,δ p∗ Cℵ3

“the ∆
˜

–type which y
˜

∗realizes over N
˜

2
δ = (

∏

n<ω N˜
2
n/F

˜
)(V

∗)
C
ℵ3

�δ

in

the model N
˜

2 = (
∏

n<ω N˜
2
n/F

˜
)(V

∗)
C
ℵ3 includes the image under F

˜

of the ∆
˜

–type which x
˜
δ/F

˜
realizes over N

˜
1
δ = (

∏

n<ω N˜
1
n/F

˜
)(V

∗)
C
ℵ3

�δ

in the model N
˜

1 = (
∏

n<ω N˜
1
n/F

˜
)(V

∗)
C
ℵ3 ”.

The proof of the Main Isomorphism Theorem 3.6. Note that we use the

countability of t
˜
.

Take a condition qδ ∈ G∗ such that

(A)qδ A∗ ⊆ Aqδ recalling that m determine A∗, x
˜
δ, y

˜

∗ = F
˜

(x
˜
δ) are CAqδ -

names (so δ ∈ Aqδ ), and p∗ ∈ CAqδ ∩δ, and

(B)qδ the condition qδ forces (in App) that clauses (b)δ, (c)δ and (d)δ from

3.5 hold true (so in particular qδ forces that x
˜
δ/F

˜
∈

∏

n<ω N˜
1
n/F

˜
,

y
˜

∗ ∈
∏

n<ω N˜
2
n and (∗)p

∗

y
˜

∗,δ from clause (ix) of 3.6 holds as F
˜

is (forced

to be) a ∆-embedding), and

(C)qδ if x
˜

is a CAqδ -name for a member of
∏Aqδ

n<ω N˜
1
n (of

∏Aqδ

n<ω N˜
2
n,

respectively), then F
˜

(x
˜

) (F
˜

−1(x
˜

), respectively) is also a CAqδ -name.

Before we continue with the proof of 3.6, let us note the following.

Lemma 3.7: Let δ < ℵ3, qδ ∈ App and y
˜

∗, p∗ be as above. Suppose that

qδ � δ = q ≤ q′ ∈ G∗ ∩ (App � δ).

Let ϑ
˜
∗ be a CA∗ -name of a τ(t

˜
)-formula. Assume further that x

˜
′, x

˜
′′ and y

˜

′, y
˜

′′

are CAq′ -names, and p∗ ≤ p ∈ CAq′ , and the condition p forces (in CAq′ ) that

(α) x
˜
′, x

˜
′′ ∈

∏

n<ω N˜
1
n, and y

˜

′, y
˜

′′ ∈
∏

n<ω N˜
2
n, and

(β) the types of (x
˜
′, y

˜

′) and of (x
˜
′′, y

˜

′′) over
∏Aq

n<ωM˜
n
Aq/F

˜
q in the model

∏Aq′

n<ωM˜
n
Aq/F

˜
q′ (i.e., the vocabulary and the ω structures are from

V[G∗
δ ][H˜

∩ CAq ], the ultraproduct is taken in V[G∗
δ ][H˜

∩ CAq′ ]) are

equal.

Then the following conditions are equivalent.
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(A) There is r0 ∈ App such that qδ, q
′ ≤ r0, r0 � δ ∈ G∗ ∩ (App � δ), and

p C
Ar0 “

∏Ar0

n<ω N˜
1
n/F

˜
r0 |= ϑ

˜
∗[x

˜
′/F

˜
r0 , x

˜
δ/F

˜
r0 ] and

∏Ar0

n<ω N˜
2
n/F

˜
r0 |= ¬ϑ

˜
∗[y

˜

′/F
˜
r0 , y

˜

∗/F
˜
r0 ]”.

(B) There is r1 ∈ App such that qδ, q
′ ≤ r1, r1 � δ ∈ G∗ ∩ (App � δ) and

p C
Ar1 “

∏Ar1

n<ω N˜
1
n/F

˜
r1 |= ϑ

˜
∗[x

˜
′′/F

˜
r1 , x

˜
δ/F

˜
r1 ] and

∏Ar1

n<ω N˜
2
n/F

˜
r1 |= ¬ϑ

˜
∗[y

˜

′′/F
˜
r1 , y

˜

∗/F
˜
r1 ] ”.

Remark: Note that y
˜

∗ is not necessarily a C � (Aqδ ∩ (δ+ 1))-name (though x
˜
δ

is), this somewhat complicates the proof.

Proof. By symmetry it suffices to show that (A) implies (B). So suppose that

r0 is as in (A). By 3.10 and 3.11 below we are done.

Proof. Continuation of the proof of 3.6: We define some Cδ-names; recall H
˜
δ ⊆

Cℵ3 � δ is generic over V∗, F
˜
δ[H

˜
δ] =

⋃

{F
˜
r′ [H

˜
δ] : r′ ∈ Gδ}, and

M
˜

∗
δ =

∏δ

n<ω

M
˜
n
δ /F

˜
δ, and N

˜
`
δ =

∏δ

n<ω

N
˜
`
n/F

˜
δ (for ` = 1, 2).

Let

Z
˜

1
δ[H

˜
δ] =

{

(x
˜
/F

˜
δ, y

˜
/F

˜
δ) ∈ N

˜
1
δ ×N

˜
2
δ : there are a τ(t

˜
)–formula ϑ ∈ ∆

˜
and

conditions p ∈ Cℵ3 and r0 ∈ App such that p∗ ≤ p, p � δ ∈ Hδ,

x
˜
, y
˜

are C
Ar0∩δ-names, and qδ ≤ r0, r0 � δ ∈ G∗ ∩ (App � δ), and

p C
Ar0 “

∏Ar0

n<ωN˜
1
n/F

˜
r0 |= ϑ[x

˜
/F

˜
r0 , x

˜
δ/F

˜
r0 ] and

∏Ar0

n<ωN˜
2
n/F

˜
r0 |= ¬ϑ[y

˜
/F

˜
r0 , y

˜

∗/F
˜
r0 ] ”

}

,

Z
˜

0
δ[H

˜
δ] = (N

˜
1
δ ×N

˜
2
δ) \ Z

˜
1
δ.

Now, it follows from 3.7 (and 2.8) that

(�)δ in V[G∗ ∩ (App � δ)][H
˜
δ], if the types realized by (x

˜
′/F

˜
δ, y

˜

′/F
˜
δ) and

(x
˜
′′/F

˜
δ, y

˜

′′/F
˜
δ) over the model

∏Aqδ ∩δ
n<ωM˜

n
Aqδ ∩δ/F˜

qδ�δ in the model
∏δ

n<ωM˜
n
Aqδ∩δ/F˜

δ are equal, then

(x
˜
′/F

˜
δ, y

˜

′/F
˜
δ) ∈ Z

˜
0
δ if and only if (x

˜
′′/F

˜
δ, y

˜

′′/F
˜
δ) ∈ Z

˜
0
δ.

Now, most clauses of 3.6 should be clear; we say more on (d)(vii,viii), for nota-

tional simplicity for m = 1.
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We let R
˜
δ,1 = Z

˜
0
δ, so clause (d)(vii)(~)2 holds.

Since F
˜

is (an App ∗ Cℵ3 -name for) a ∆
˜

-embedding from
∏

n<ω N˜
1
n/F

˜
into

∏

n<ω N˜
2
n/F

˜
, if x

˜
/F

˜
δ ∈ N

˜
1
δ , then Cδ

“(x
˜
/F

˜
δ, F

˜
(x
˜

)/F
˜
δ) ∈ Z

˜
0
δ”. Hence clause

(d)(viii)(⊕)1 holds.

Thus the proof of 3.6 is completed.

Conclusion 3.8: In V[G∗][Hℵ3 ], for each m, there is a stationary set S ⊆

{δ < ℵ3 : cf(δ) = ℵ2} and conditions q, qδ ∈ App for each δ ∈ S such that:

• clauses (a)δ–(d)δ of 3.5 are satisfied,

• qδ ∈ G∗, qδ � δ = q, qδ, y
˜
δ as in 3.5,

• the conclusion of 3.6 holds,

• for every δ1, δ2 ∈ S there is a one-to-one order preserving function

h : Aqδ1
onto
−→ Aqδ2 (so it is the identity on Aq) which maps δ1, qδ1 , x

˜
δ1 ,

F
˜

(x
˜
δ1) = y

˜
δ1 onto δ2, qδ2 , x

˜
δ2 , F

˜
(x
˜
δ2) = y

˜
δ2 ,

Proof. Straightforward.

We still have some debts, as 3.11,3.10 were used in the proof of 3.6

Definition 3.9: (1) Let ~β,q,r,s,f
˜

mean that

(a) q, r, s ∈ Appβ ;

(b) q ≤ r and q ≤ s;

(c) Ar = As call it A;

(d) f
˜

is a CA-name of a partial (one to one) elementary mapping from
∏A

n<ωM˜
n
Aq/F

˜
r into

∏A

n<ωM˜
n
Aq/F

˜
s over

∏Aq

n<ωM˜
n
Aq/F

˜
q; i.e.

(α) f
˜

is a subset of {(a
˜
, b
˜
) : a

˜
, b
˜

are canonical CA-names of ω-sequences

of natural numbers},

(β) ifGA⊆CA is generic over V then in V[GA], the set {(a
˜

[GA], b
˜
[GA]):

(a
˜
, b
˜
) ∈ f

˜
} is a function and

(γ) if moreover in V[GA] the first order formula ϕ(x1, . . . , xn) is in

the vocabulary τAq and (a
˜
`, b

˜
`) ∈ f

˜
for ` = 1, . . . , n and we let

F1 = F
˜
r[GA] and F2 = F

˜
s[GA] then

∏A

n<ω

Mn
Aq/F1 |= ϕ[(a

˜
1[GA])/F1, . . . , (a

˜
n[GA])/F1]

iff
∏A

n<ω

Mn
Aq/F2 |= ϕ[(b

˜
1[GA])/F2, . . . , (b

˜
n[GA])/F2].
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(δ) f
˜

include the identity may on
∏Aq

n<ωM˜
n
Aq/Fq.

(2) Let ~+
β,q,r,s,f

˜

means that in part (1) we add: f
˜

is an isomorphism from
∏A

n<ωM˜
n
Aq/F

˜
r onto

∏A

n<ωM˜
n
Aq/F

˜
s (i.e. this is CA

).

Observation 3.10: Assume ~β,q,r,s,f
˜

If cf(β) = ℵ2 or β is divisible by ℵ2 and has cofinality ℵ0 then we can find

r′, s′, f ′ such that ~+
β,q,r′,s′,f

˜

′ and r ≤ r′, s ≤ s′ and C
Ar′

“f
˜
⊆ f

˜

′”

Proof. By ℵ1 uses of 2.7(1) and 2.8(4) if cf(β) = ℵ2 and by ℵ1 uses of 2.8(5)

and 2.8(4) if cf(β) = ℵ0.

Lemma 3.11: If β1 < β2 < ℵ3 are divisible by ℵ2, q2 ∈ Appβ2
, q0 = q2 �

β1, q0 ≤ r0 ∈ Appβ1
, q0 ≤ sσ ∈ Appβ1

, r0 ≤ r1 ∈ Appβ2
, q2 ≤ r1 ∈ Appβ2

, and

~+
β1,q0,r0,s0,f

˜

(see Definition 3.9)

then we can find r2, s2 and f ′

˜
such that:

(i) ~+
β2,q2,r2,s2,f

˜

′ ;

(ii) r1 ≤ r2;

(iii) s ≤ s2 and q2 ≤ r2

(iv) CA
r2
f
˜
⊆ f

˜

′.

Proof of 3.11. Let f
˜

1 = f
˜
∪(a

˜
, a
˜

): a
˜

is a canonical CAq2 -name of an w-sequence

of natural numbers. It is enough to find s′ ∈ App such that letting r′ = r1 we

have As′ = Ar′ , p ≤ s′, s0 ≤ s′ and ~β2,q2,r′,s′,f
˜

1 (i.e., without the +), this is

enough by observation 3.10. This weaker statement we prove for every β1 < β2

(not necessarily divisible by ℵ2). We prove this by induction on β2.

Case 1: β2 = 0.

Empty.

Case 2: β2 = β1 + ℵ2 and cf(β1) < ℵ2.

Let f
˜

= {(a
˜
ε, b

˜
ε) : ε < ε∗}. So it suffices to find a CAr′ -name of an ultra-

filter which is forced to include the following families (recall that number of
∏Aq2

n<mM
n
Aq2 can be represented as individual constants.)

(a) Fq2 ;

(b) Fs;

(c) the sets of the form {n : M
˜
n
Ar′ |= ϕ

˜
(b
˜
ε0(n), . . . , b

˜
εk−1

(n))}: where

ε0, . . . , εk−1 < ε∗ and ϕ
˜

(x0, . . . xk−1) is a CAq2 - name of a first order formula
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in the vocabulary τAq2 such that

∏Ar1

n<ω

M
˜
n
Aq2 /F

˜
r1 |= ϕ

˜
[a
˜
ε0/F

˜
r1 , . . . , a

˜
εk−1

/F
˜
r1 ].

So it suffices to prove that any finite intersection is not empty, but each of

those families is closed under finite intersection, hence it suffices to prove the

following

~ p 1C
Ar′

“a
˜
∩ b

˜
∩ c

˜
= ∅” when

(a) p ∈ CAr ;

(b) a
˜

is a CAq2 - name such that p � Aq2  “a
˜
∈ F

˜
q2”;

(c) b
˜

is a CAs-name such that p � As  “b
˜
∈ F

˜
s”;

(d) c
˜

= {n : M
˜
n
Ar1 |= ϕ

˜
[b
˜
ε0(n), . . . , b

˜
εk−1

(n)]} where ϕ
˜

is a CAq2 -name of a

first order formula in the vocabulary τAq2 , without loss of generality a

predicate as an atomic formula, such that

p CA
r1

“
∏Ar1

n<ω

M
˜
n
Aq2 /F

˜
r1 |= ϕ[a

˜
ε0/F

˜
r1 , . . . , a

˜
εk−1

/F
˜
r1 ]”.

Without loss of generality p forces that ϕ
˜

= Q〈R
˜

2
n:n<ω〉. Let H ⊆ CAq0 be

generic over V such that p � Aq0 ∈ H . In V[H ] for each n we define a k-place

relation R0
n on ω R0

n = {(m0, . . . ,mk−1): there is p′, p � Aq2 ≤ p′ ∈ CAq2 ,

p′ � Aq0 ∈ H such that p′  n ∈ a
˜

and 〈m0, . . . ,mk−1〉 ∈ R
˜

2
n}

Now

(∗)0 p Cr1

∏Ar1

n<ωM
n
Aq2 /F

˜
r1 |= ϕ[a

˜
ε0/F

˜
r1 , . . . , a

˜
εk−1

/F
˜
r]

hence

(∗)1 p Cr1 “〈a
˜
ε0/F

˜
r1 , . . . , a

˜
εk−1

/F
˜
r1〉 ∈ Q〈R

˜
2
n:n<ω〉”

hence

(∗)2 p � Ar1  〈a
˜
ε0/F

˜
r1 , . . . , a

˜
εk−1

/F
˜
r1〉 ∈ Q〈R

˜
0
n:n<ω〉”

hence

(∗)3 p � Ar0 

“〈b
˜
ε0/F

˜
s0 , . . . , b

˜
εk−1

/F
˜
s0〉 satisfies Q〈R0

n:n<ω〉 in
∏As0

n<ωM˜
n
Aq0 /F

˜
s0”

so

(∗)4 in V[H ], we have b′ ∈ F
˜

q0 where b′ = {n : for some p′, p � As0 ≤ p′ ∈

CAs0 and p′ � Aq0 ∈ H and p′ CA
s0

“n ∈ b
˜

and 〈b
˜
ε0(n), . . . , b

˜
εk−1

(n)〉 ∈

R
˜

0
n[H ]”}.

So clearly b′ is a non-empty set of natural numbers, so choose n ∈ b′. So there

is p1 ∈ CAs , p � As ≤ p1, p1 � Aq0 ∈ H , p1  “n ∈ b
˜

and 〈b
˜
ε0(n), . . . b

˜
εk−1

(n)〉 ∈

R
˜

0
n[H ]”. Without loss of generality p1 forces values to b

˜
ε0(n), . . . , b

˜
εk−1

(n), call
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them m0, . . . ,mk−1. So 〈m0, . . . ,mk−1〉 ∈ R
˜

0
n[H ], hence by its definition there

is p2 such that p � Aq2 ≤ p2 ∈ CAq2 , p2  “n ∈ a
˜

and 〈m0, . . . ,mk−1〉 ∈ R
˜

2
n”.

Now p∗ =: p1 ∪ p2 ∈ CAr′ is above p, p∗ � Aq0 ∈ H , and it forces that

n ∈ a
˜
∩ b

˜
∩ c

˜
, which is enough.

Case 3: β2 = β + 1, β 6= β1.

First by the induction hypotheses we can find r′, s′, f ′

˜
such that

� (a) r0 ≤ r′ ∈ App � β,

(b) s0 ≤ s′ ∈ App � β,

(c) q2 � β1 ≤ s′,

(d) ~+
β1,q2�β,r′,s′,f ′

˜

.

Now we continue as in case 2, noting: if cp(β) = ℵ2 then the Γ
˜

q2
β1

-bigness of

x
˜
β1 is automatic.

Case 4: β2 is a limit ordinal.

Let 〈γε : ε < cf(β2)〉 be increasing continuous with limit β2 such that γ0 =

β1, cf(γε) < ℵ2 and stipulate γcf(β2) = β2. We choose (r′ε, s
′
ε, f

˜
ε) by induction

on ε ≤ cf(β2) such that

� (a) ~βγε ,q2�γε,r′ε,s′ε,f
˜

ε
holds;

(b) (r′0, s
′
0, f

˜
0) = (r0, s0, f

˜
);

(c) r′1 � γε ≤ r′ε;

(d) if ζ < ε then r′ζ ≤ r′ε, s
′
ζ ≤ s′ε and C

Ar′ε
f
˜
ζ ⊆ f

˜
ε.

Clearly if we succeed we are done with case 4.

For ε = 0 this is trivial.

For ε = ζ + 1 first find r′′ζ ∈ Appγε
such that r1 � γε ≤ r′′ζ and r′′ζ � γζ = r′ζ ,

possibly by 2.8(3). Second apply the induction hypothesis with (γζ , γε, q2 �

βζ , q2 � βε, rζ , s
′
ζ , r

′′
ζ , f

˜
ζ , f

˜
ε) standing for (β0, β2, q0, q2, r0, s0, r1, f

˜
, f
˜

′).

For ε limit of uncountable cofinality take the union (see 2.8(4)).

For ε limit of countable cofinality, we first repeat the argument in case 2.

Then use 2.8 and then 3.10.

4. Back to Model Theory

In this section we present just enough to solve the problem on finite fields.
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Definition 4.1: Let M be a model. Assume N1 = M [ϕ̄1] , N2 = M [ϕ̄2] are models

of t0 interpreted in M by the sequences ϕ̄1, ϕ̄2 of formulas with parameters from

M , and they have the same vocabulary τ∗ = τ(N1) = τ(N2). Furthermore, let

Γ be an invariant bigness notion in M (over some set A0 of < κ parameters,

more exactly in K(M,A0)), and ∆ ⊆ Lω,ω(τ(N1)) and κ > ℵ0 (for simplicity)

and for a formula ϑ(x̄) ∈ ∆ let ϑϕ̄`(x̄) be the result of substituting ϕ̄` in ϑ so

N ` |= ϑ[ā] iff ā ∈ lgx̄(N `) and M |= ϑϕ̄` [ā].

(1) We say that (N1, N2) is (κ,Γ,∆)-complicated in M when:

for every ∆-embedding F of N1 into N2, and for every Γ-big type p0(x)

inside M of cardinality < κ such that p0(M) ⊆ N1, there is a Γ-big type

p1(x) inside M of cardinality< κ which includes p0(x) and such that, letting

τ(p1) ⊆ τ(M) consist of those predicates and function symbols mentioned

in p1(x) (so |τ(p1)| < κ) and A ⊆ M which is the set of parameters of p0

union with A0 so |A| < κ and A0 ⊆ A, we have

(∗)p1(x) letting

Rm
def
= {(ā, b̄) : ā ∈ m(N1), b̄ ∈ m(N2) and for some c̄ ∈ m(N1) we have

tpLω,ω(τ(p1))(ā
_b̄, A,M) = tpLω,ω(τ(p1))(c̄

_F (c̄), A,M) }

the parallel of 3.6(vii)+(viii) holds, so

(⊕)1 if ā1, ā2 are finite sequences of the same length m of members of

N1, and p1 ∪ {ϑN1

ϕ̄1 (x, ā1),¬ϑN1

ϕ̄1 (x, ā2)} is a Γ-big type over M , and

ϑ,¬ϑ ∈ ∆, then (ā1, F (ā2)) /∈ Rm.

(⊕)2 Moreover, in ⊕1 we can replace ϑ,¬ϑ by any pair ϑ0, ϑ1 of contradic-

tory formulas from ∆.

(2) In part (1):

(i) We do not mention ∆ if it is the set of quantifier free formulas (of

Lω,ω(τ(N1))).

(ii) We replace Γ by (t, ψ) if we mean “for all bigness notions of the form

Γ = Γ(t,ψ,ϕ̄), where ϕ̄ is an interpretation of t in M with < κ parame-

ters and |t| < κ, ψ ∈ Lκ,ω” (i.e., ψ ∈ Lµ+,ω for some µ < κ and in the

vocabulary τ(t) ∪ {P ∗}).

(iii) We omit Γ if we mean “for all Γ’s as in (ii)”.

(iv) We say M is κ-complicated (or: (κ,Γ,∆)-complicated) and omit

N1, N2 if this holds for all N1, N2 as in our assumptions, but with

|τ(N1)| < κ.
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Remark 4.2: More on the relation Rn etc., see [Sh800].

Theorem 4.3: Let G be a full (ℵ3,ℵ2)-bigness guide (see 2.2; recall there is

one by 2.3). Assume that G ⊆ AppG is generic over V and H ⊆ Cℵ3 is generic

over V[G] and F = F
˜

ℵ3 [G][H ], and let 〈Mn = Mn
ℵ3

: n < ω〉 be a sequence

of models as in 2.1(4), that is each with a countable universe being the set of

natural numbers for simplicity, all with the same vocabulary such that for every

k and a sequence 〈Rn : n < ω〉 with Rn being a k-place relation on Mn there

is a k-place predicate in the common vocabulary satisfying RMn = Rn for each

n. Then

(1) in V[G][H ] the modelM=
∏

n<ωM
n
ℵ3
/F is ℵ2-complicated and ℵ2-compact.

(2) We can change the demands on G accordingly to the version of ℵ2-compli-

cated we actually used (e.g., not all Γ-s, etc.), (so we are using a different

G).

(3) If N1, N2 are models of tind
1 (which is defined in Definition 1.5), interpreted

in M , then any isomorphism π from N1 onto N2 is definable in M .

(4) If N ` =
∏

n<ω N
`
n/F , each N `

n is countable, and N ` is a model of tind
1

(for ` = 1, 2), and π is an isomorphism from N1 onto N2, then there are

A ∈ F and isomorphisms πn from N1
n onto N2

n (for n ∈ A) such that

π =
∏

n<ω πn/F .

(5) Above we may replace : “N ` is a model of tind
1 ” by “some formula φ(x, y)

in the vocabulary of N1 which is equal to that of N2, has the strong inde-

pendence property” (in their common theory 10, see Definition 1.5 on the

strong independence property).

(6) If N `
n are finite fields (for ` = 1, 2 and n < ω), and

∏

n<ω N
1
n/F is isomor-

phic to
∏

n<ω N
2
n/F , then the set {n < ω : N1

n
∼= N2

n} belongs to F .

Proof. (1) By 3.8.

(2) The same proof.

(3) By 4.4 below and 1.6(2).

(4) Without loss of generality, the universe of N `
n is α`n ≤ ω. Now, for

` = 1, 2, we can find P` ∈ τM such that (P`)
Mn

ℵ3 = |N `
n| and for Q` ∈ τ(N `

n)

there is Q` ∈ τM with (Q`)
Mn

ℵ3 = QN
`
n and R` ∈ τM with (R`)

Mn
ℵ3 = RN

`
n .

10 Of course if the strong independence property holds when we restrict ourselves to say a

predicate P we get less, but see [Sh800]
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Therefore, N ` =
∏

n<ω N
`
n/F can be viewed as an interpretation in M by ϕ̄`.

Now apply part (3) for Γ = Γ(tind
1 ,ψind,ϕ̄1).

(5) This follows by part (4), as the vocabulary is finite, being an isomorphism

is expressibly a first order sentence.

(6) This is a particular case of part (4). Of course without loss of generality

the fields N1, N2 are infinite. By part (5) it suffices for infinite ultraproducts

N ` of finite fields to find a formula ϑ(x, y) in the vocabulary of fields which has

the strong independence property see Definition 1.5. First we deal with the case

that the fields are of characteristic > 2. Consider the formula ϑ(x, y) saying

that x+ y has a square root in the field.

We rely on a theorem of Duret, [Du80, p. 982, Lemma 10], for the value

p = 2 the hypothesis of this lemma holds as the field contains all pth roots of

the unit (that is 1,−1). The conclusion says that for n and any pairwise distinct

elements a1, . . . , an, b1, . . . , bn of the field there is an element c such that am+ c

has a square root and bm + c does not have a square root for m = 1, . . . , n. So

the formula ϑp(x, y) = (∃z)(zp = x+ y) is as required.

Of course, if the characteristic of the field is 2, then we naturally use the

same theorem only choosing p = 3, so, of course, the field may perhaps fail

to have all the pth roots of the unit, however, as Duret does, in this case we

consider an algebraic extension of N ` of order 3 by adding a root of x3 − 1

hence all of them getting a new field N `
∗. Now the set of elements of N `

∗ can

be represented as the set of triples of elements of N `, and the operations of

N `
∗ are definable in N `; so our problem is almost notational. E.g., we can note

that recalling N ` =
∏

n<ω N
`
n/F then N `

∗ =
∏

n<ω N
`
∗,n/F where N `

∗,n is equal

to N `
n if N `

n has three 3rd roots of the unit and an algebraic extension of N `
n

of order three which has this property otherwise. Again the first order theory

of N `
∗ has the strong independence property and for N1

∗ , N
2
∗ (by asking on the

existence of cubic roots) we get the desired conclusion; but any isomorphism

from N1 onto N2 can be extended to an isomorphism from N1
∗ onto N2

∗ and

we can easily finish. (We could have used the“strong independence property for

m-types”.)

Proposition 4.4: Assume that M is a κ-complicated κ-compact model. Let

N1, N2 be interpretations of tind
1 in M . Then for any isomorphism π from

N1 onto N2, the function π is definable in M by a first order formula (with

parameters).
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Proof. Let N` = M [ϕ̄`] (so ϕ̄` has parameters in M) for ` = 1, 2 and let F be

an isomorphism from N1 onto N2.

Let Γ be the bigness notion Γ(tind,ψind,ϕ̄1,) (so ψind ∈ Lω1,ω). Let p0(x) be

the type just saying x ∈ QN1, and let p1 be the type guaranteed to exists

in Definition 4.1(1), without loss of generality closed under conjunctions. Let

A ⊆ M , |A| < κ and τ∗ ⊆ τM , |τ∗| < κ be given by the definition of being

κ-complicated (applied to F ). (Without loss of generality, A includes the pa-

rameters of ϕ̄1, ϕ̄2 and is closed under F and F−1, and for every n and for every

formula ϕ(x) ∈ p1, A includes the finite set mentioned in 1.5(2).)

Let R1 be as in 4.1(1). Clearly, recalling Definition 1.5(2), there are no

distinct a1, a2 ∈ PN1 \ A and b ∈ N2 such that (a1, b), (a2, b) ∈ R1, but a ∈

PN1 ⇒ (a, F (a)) ∈ R1. Hence

{(b, a) : (a, b) ∈ R1 and a ∈ PN1 }

is the graph of a partial function from PN2 into PN1 which includes the graph

of F−1 � PN2 . But F is one-to-one and onto. Therefore, R1 � (PN1 × PN2) is

the graph of F � PN1 . But R1 � PN1 is definable in (M � τ∗, c)c∈A by a formula

from L∞,κ, so also F � PN1 is, and thus if N1, N2 are models of tind
1 also F is

(by 1.6). Applying [Sh72, 1.9] (or [Sh:e, Ch XI]) we conclude that it is definable

by a first order formula with parameters from M , as required.

Similarly we can show the following.

Proposition 4.5: Assume that Γ is a (ℵ2,ℵ1)–(P, ϑ)-separative bigness notion,

see Definition 1.4. Suppose that N1, N2 are interpretations of t in M , and M

is κ-compact κ-complicated (or just κ-complicated for Γ), κ > ℵ0.

(a) If F is an isomorphism from N1 onto N2, then

(∗)1 F � PN1 is definable in (M � τ∗, c)c∈A by a formula from L∞,κ, recall-

ing τ ⊆ τM , |τ | < κ, A ⊆M , |A| < κ.

(b) If F is an embedding of N1 into N2, then

(∗)2 there is a partial function f from PN2 into PN1 which extends F−1

and is definable in (M � τ∗, c)c∈A by a formula from L∞,κ, where τ∗, A

are as above.

Remark 4.6: (1) The proposition 4.5 should be the beginning of an analysis of

first order theories T . For more in this direction see [Sh503], [Sh800].
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(2) As stated in the introduction, we may avoid the preliminary forcing with

App and construct the name F
˜

in the ground model V, provided V is

somewhat L-like. Assuming ♦{δ<ℵ3:cf(δ)=ω2} is enough, but we may also

use the weaker principle from [HLSh162] and [Sh405, Appendix].

(3) We may vary the cardinals, e.g., we may replace ℵ2,ℵ3 by κ, λ, respectively,

provided λ = κ+, κ = κ<κ (so an approximation has size < κ).

Moreover we can replace ℵ0 by θ = θ<θ, so in full let us assume that

θ = θ<θ < κ = κ<κ < λ = κ+.

(a) For A ⊆ λ let C(A) = CA = {p : p is a partial function from Dom(p) ∈

[A]<θ to θ>2 } ordered by

p1 ≤CA
p2 iff Dom(p1) ⊆ Dom(p2) and (∀α ∈ Dom(p1))(p1(α) E p2(α)).

(b) We define App−
G as the set of q = (Aq,F

˜
q) where Aq ∈ [λ]<κ and F

˜
q

is a CAq -name of a regular ultrafilter on θ such that for each α < λ,

F
˜
q ∩ P(θ)V

C(Aq
∩α)

is a CAq∩α–name.

(c) For α ∈ A ∈ [λ]<κ, x
˜
α is the CA–name

⋃

{p(α) : p ∈ G
˜

C(A)} of a

member of θθ.

(d) We define M
˜
ε
A for ε < θ, A ∈ [λ]<κ as the following CA-name:

it is a model with universe θ,

τM
˜

ε
A

= {PR̄
˜

: R̄
˜

= 〈R
˜
ε : ε < θ〉, for some m each R̄

˜
ε is a CA- name of

an m–place relation on θ},

(PR̄
˜

)M˜
ε
A = R

˜
ε.

So we may think of τM
˜

ε
A

to be an old object whose members are indexed

as PR̄
˜

, where each R
˜
ε is a CA–name. Or we can consider τM

˜
ε
A

to be a

name and interpret it in V[GC(A)].
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